228 research outputs found

    Multidimensional separation prior to mass spectrometry: Getting closer to the bottom of the iceberg

    Get PDF
    While prefractionation has previously been shown to improve results in MS analysis, a novel combination provides an additional dimension of separation: protein fractionation by SDS-PAGE followed by IEF of tryptic peptides before separation by RP-LC [Atanassov and Urlaub, Proteomics 2013, 13, 2947-2955]. This three-step separation procedure prior to MS/MS substantially increases proteome coverage and represents a further step toward a more comprehensive analysis of complex proteomes

    How shall we use the proteomics toolbox for biomarker discovery?

    Get PDF
    Biomarker discovery for clinical purposes is one of the major areas in which proteomics is used. However, despite considerable effort, the successes have been relatively scarce. In this perspective paper, we try to highlight and analyze the main causes for this limited success, and to suggest alternate strategies, which will avoid them, without eluding the foreseeable weak points of these strategies. Two major strategies are analyzed, namely, the switch from body fluids to cell and tissues for the initial biomarker discovery step or, if body fluids must be analyzed, the implementation of highly selective protein selection strategies

    Silver Staining of 2D Electrophoresis Gels

    Get PDF
    Silver staining is used to detect proteins after electrophoretic separation on polyacrylamide gels. It -combines excellent sensitivity (in the low nanogram range) with the use of very simple and cheap equipment and chemicals. For its use in proteomics, two important additional features must be considered, compatibility with mass spectrometry and quantitative response. Both features are discussed in this chapter, and optimized silver staining protocols are proposed.Comment: arXiv admin note: substantial text overlap with arXiv:0904.353

    When 2D is not enough, go for an extra dimension

    Get PDF
    The use of an extra SDS separation in a different buffer system provide a technique for deconvoluting 2D gel spots made of several proteins (Colignon et al. Proteomics, 2013, 13, 2077-2082). This technique keeps the quantitative analysis of the protein amounts and combines it with a strongly improved identification process by mass spectrometry, removing identification ambiguities in most cases. In some favorable cases, posttranslational variants can be separated by this procedure. This versatile and easy to use technique is anticipated to be a very valuable addition to the toolbox used in 2D gel-based proteomics

    Variations on a theme: Changes to electrophoretic separations that can make a difference

    Get PDF
    Electrophoretic separations of proteins are widely used in proteomic analyses, and rely heavily on SDS electrophoresis. This mode of separation is almost exclusively used when a single dimension separation is performed, and generally represents the second dimension of two-dimensional separations. Electrophoretic separations for proteomics use robust, well-established protocols. However, many variations in almost all possible parameters have been described in the literature over the years, and they may bring a decisive advantage when the limits of the classical protocols are reached. The purpose of this article is to review the most important of these variations, so that the readers can be aware of how they can improve or tune protein separations according to their needs. The chemical variations reviewed in this paper encompass gel structure, buffer systems and detergents for SDS electrophoresis, two-dimensional electrophoresis based on isoelectric focusing and two-dimensional electrophoresis based on cationic zone electrophoresis

    How to use 2D gel electrophoresis in plant proteomics

    Get PDF
    Two-dimensional electrophoresis has nurtured the birth of proteomics. It is however no longer the exclusive setup used in proteomics, with the development of shotgun proteomics techniques that appear more fancy and fashionable nowadays.Nevertheless, 2D gel-based proteomics still has valuable features, and sometimes unique ones, which make it often an attractive choice when a proteomics strategy must be selected. These features are detailed in this chapter, as is the rationale for selecting or not 2D gel-based proteomics as a proteomic strategy

    Keynotes on membrane proteomics

    Get PDF
    This review article deals with the specificities of the proteomics analysis of membrane proteins

    Silver Staining of Proteins in 2DE Gels

    Get PDF
    Silver staining detects proteins after electrophoretic separation on polyacrylamide gels. Its main positive features are its excellent sensitivity (in the low nanogram range) and the use of very simple and cheap equipment and chemicals. The sequential phases of silver staining are protein fixation, then sensitization, then silver impregnation, and finally image development. Several variants of silver staining are described here, which can be completed in a time range from 2 h to 1 day after the end of the electrophoretic separation. Once completed, the stain is stable for several weeks

    Detergents and Chaotropes for Protein Solubilization before Two-Dimensional Electrophoresis

    Get PDF
    Because of the outstanding separating capabilities of two-dimensional electrophoresis for complete proteins, it would be advantageous to be able to apply it to all types of proteins. Unfortunately, severe solubility problems hamper the analysis of many classes of proteins, but especially membrane proteins. These problems arise mainly in the extraction and isoelectric focusing steps, and solutions are sought to improve protein solubility under the conditions prevailing during isoelectric focusing. These solutions deal mainly with chaotropes and new detergents, which are both able to enhance protein solubility. The input of these compounds in proteomics analysis of membrane proteins is discussed, as well as future directions.Comment: link to publisher's site http://biomed.humanapress.com

    The proteomic to biology inference, a frequently overlooked concern in the interpretation of proteomic data: A plea for functional validation

    Get PDF
    Proteomics will celebrate its 20th year in 2014. In this relatively short period of time, it has invaded most areas of biology and its use will probably continue to spread in the future. These two decades have seen a considerable increase in the speed and sensitivity of protein identification and characterization, even from complex samples. Indeed, what was a challenge twenty years ago is now little more than a daily routine. Although not completely over, the technological challenge now makes room to another challenge, which is the best possible appraisal and exploitation of proteomic data to draw the best possible conclusions from a biological point of view. The point developed in this paper is that proteomic data are almost always fragmentary. This means in turn that although better than an mRNA level, a protein level is often insufficient to draw a valid conclusion from a biological point of view, especially in a world where PTMs play such an important role. This means in turn that transformation of proteomic data into biological data requires an important intermediate layer of functional validation, i.e. not merely the confirmation of protein abundance changes by other methods, but a functional appraisal of the biological consequences of the protein level changes highlighted by the proteomic screens
    corecore